fotovoltaica

Perovskita y puntos cuánticos para mejorar la eficiencia de las células solares

1
Investigadores del Instituto de Materiales Avanzados (INAM) de la Universitat Jaume I de Castellón y de la Universitat de València han conseguido medir el estado exciplex, resultado del acoplamiento de la perovskita de haluros y puntos cuánticos coloidales. Estas dos familias de materiales tienen por separado un enorme interés en el desarrollo de dispositivos optoelectrónicos y su interactuación podría mejorar la eficiencia de las células solares y la tecnología LED.
Perovskita y puntos cuánticos para mejorar la eficiencia de las células solares

El estudio ha conseguido demostrar que gracias al acoplamiento, el sistema combinado puede emitir luz a una longitud de ola más larga que la que podrían emitir por separado cada uno de sus componentes, hecho que permitiría diseñar un amplio abanico de nuevos dispositivos, que además de emitir luz podrían abrir el camino para un nuevo tipo de células solares más eficientes que las actuales y para obtener LEDs sintonizables.



Al combinar la perovskita híbrida de haluro y los puntos cuánticos, los científicos han observado que se produce un nuevo estado, distinto de los dos materiales empleados, que permite obtener luz a una longitud de onda inferior a la de los materiales originales al mismo tiempo que se puede controlar el color de emisión mediante el voltaje aplicado. El uso inmediato seria la obtención de LEDs con luz controlada por el voltaje en el espectro del no visible (infrarrojo) con aplicación, por ejemplo, en el campo de telecomunicaciones, pero al ser dos materiales bastante versátiles sería posible conseguir luz dentro del espectro visible e incluso combinar un LED con emisión en el visible o en el infrarrojo dependiendo de las condiciones aplicadas.



Esta nueva línea de investigación que incorpora los puntos cuánticos a la perovskita puede dar lugar a procesos potencialmente nuevos dentro del campo de las aplicaciones optoelectrónicas.



Los investigadores consideran que "si se puede combinar el electrodo de un material con el vacío de otro y emitir un fotón (qué es el que hace un LED), también sería posible, en teoría, el proceso contrario, absorber un fotón de una longitud de onda larga para producir electricidad, aprovechando así mejor todas las longitudes de onda de la luz provenientes del Sol que llegan a la Tierra", lo que serviría para conseguir células solares más eficientes, las llamadas de banda intermedia, con más capacidad para absorber energía.





El estudio fue publicado el 22 de enero por Sciencie Advances, revista de acceso abierto de la misma editorial que la prestigiosa Science. El trabajo está dirigido por Iván Mora Seró, del Instituto de Materiales Avanzados de la UJI, y Juan Martínez Pastor de la Universitat de València. Han participado como primeros autores Rafael Sánchez y Mauricio Solís (INAM) y han contribuido Isaac Suárez y Guillermo Muñoz (UV).




Añadir un comentario
Eduardo
Lo interesante seria unir un concentrador solar de fibra óptica con dopantes hibridos a una celda de puntos cuánticos. La celda puede estar sellada y encapsulada en el extremo de la fibra sin contacto con el aire.
Baterías con premio en la gran feria europea del almacenamiento de energía
El jurado de la feria ees (la gran feria europea de las baterías y los sistemas acumuladores de energía) ya ha seleccionado los productos y soluciones innovadoras que aspiran, como finalistas, al gran premio ees 2021. Independientemente de cuál o cuáles sean las candidaturas ganadoras, la sola inclusión en este exquisito grupo VIP constituye todo un éxito para las empresas. A continuación, los diez finalistas 2021 de los ees Award (ees es una de las cuatro ferias que integran el gran evento anual europeo del sector de la energía, The smarter E).